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NOTES ON HARMONIC ANALYSIS

PART I: THE FOURIER TRANSFORM

KECHENG ZHOU AND M. VALI SIADAT

Abstract. Fourier Transforms is a first in a series of monographs we present on harmonic
analysis. Harmonic analysis is one of the most fascinating areas of research in mathematics.
Its centrality in the development of many areas of mathematics such as partial differen-
tial equations and integration theory and its many and diverse applications in sciences and
engineering fields makes it an attractive field of study and research.

The purpose of these notes is to introduce the basic ideas and theorems of the subject
to students of mathematics, physics or engineering sciences. Our goal is to illustrate the
topics with utmost clarity and accuracy, readily understandable by the students or interested
readers. Rather than providing just the outlines or sketches of the proofs, we have actually
provided the complete proofs of all theorems. This will illuminate the necessary steps taken
and the machinery used to complete each proof.

The prerequisite for understanding the topics presented is the knowledge of Lebesgue
measure and integral. This will provide ample mathematical background for an advanced
undergraduate or a graduate student in mathematics.

1. Fourier Transforms for L1(R)

Definition 1.1. For f ∈ L1(R), the Fourier transform f̂ of f is defined as

(1.1) f̂(y) =

∫ ∞

−∞
f(x)e−ixydx

for all real y ∈ R.

It is easy to see that Fourier transform is a lineaer operator, i.e., (f + g)(̂y) = f̂(y) + ĝ(y)

and (kf)(̂y) = kf̂(y). Also using simple integration techniques it can easily be shown that

f̂(y + t) = eity f̂(y) and f̂(ky) = 1
k f̂(

y
k ).

Theorem 1.1. If f ∈ L1(R), then f̂(y) is uniformly continuous and bounded in R.

Proof: Clearly, |f̂(y)| ≤ ||f ||1 for all y. Moreover,

|f̂(y + h)− f̂(y)| = |
∫ ∞

−∞
f(x)(e−ix(y+h) − e−ixy)dx|

≤
∫ ∞

−∞
|f(x)||e−ixh − 1|dx.

The integrand on the right side converges to 0 as h → 0 and is dominated by 2|f(x)| ∈ L1(R).

So, by Lebesgue’s dominated convergence theorem, f̂ is uniformly continuous. �
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Theorem 1.2 (Riemann-Lebesgue Lemma). If f ∈ L1(R), then f̂(y) → 0 as y → ±∞.

Proof: First suppose that f is a characteristic function of an interval [a, b]. Its Fourier
transform is ∫ b

a
e−ixydx =

e−iay − e−iby

iy
, y 6= 0,

which tends to zero. Therefore, a linear combination of characteristic functions of intervals,
i.e., a step function, satisfies the Riemann-Lebesgue lemma. Such functions are also dense
in L1(R). Now let f ∈ L1(R) and let fn ∈ L1(R) be a sequence of step functions such that
fn → f in L1(R). Then

|f̂n(y)− f̂(y)| = |(fn − f )̂ (y)| ≤ ||fn − f ||1 → 0.

Note that the limit is uniform in y ∈ R. Since

|f̂(y)| ≤ |f̂n(y)− f̂(y)|+ |f̂n(y)|,
we can choose n large enough so that the first term on the right is small and then for that fixed
n, we let |y| large enough so that the second term is also small. This completes the proof. �

Theorem 1.3. Suppose that f(x)(1 + |x|) is integrable. Then,

(1.2) (f̂)′(y) = (−ixf(x))̂ (y).

Proof: Note that, by assumption, both f and xf(x) are integrable. We write

(f̂)′(y) = lim
h→0

∫ ∞

−∞
f(x)

e−ix(y+h) − e−ixy

h
dx

= lim
h→0

∫ ∞

−∞
f(x)e−ixy e

−ixh − 1

h
dx.

Note that the integrand converges to f(x)e−ixy(−ix) pointwise as h → 0 and |f(x)e−ixy e−ixh−1
h | ≤

|xf(x)| for all small |h|. 1 Hence, by Lebesgue’s dominated convergence theorem ,

(f̂)′(y) = lim
h→0

∫ ∞

−∞
f(x)e−ixy e

−ixh − 1

h
dx =

∫ ∞

−∞
(−ixf(x))e−ixydx. �

Theorem 1.4. If f is continuously differentiable with compact support, then

(1.3) (f ′)(̂y) = iyf̂(y).

Proof: Integration by parts. �

Definition 1.2. The convolution of f and g is defined as

(1.4) (f ∗ g) (x) =
∫ ∞

−∞
f(x− t)g(t)dt,

1Estimating the remainder (both Lagrange form and integral form) of Taylor’s series for eix we obtain the
estimation

|eix −
n∑

k=0

(ix)k

k!
| ≤ min(

|x|n+1

(n+ 1)!
,
2|x|n

n!
).

Note that the first estimate is better for small |x|, while the second is better for large |x|. Choosing n = 0 and
considering small |h| we get the inequality in context.



NOTES ON HARMONIC ANALYSIS 3

whenever the integral exists.

In the following, C(R) denotes the space of all continuous functions on R with ||f ||C =
supx∈R|f(x)| < ∞ and C0(R) the space of all continuous functions on R that vanishes at
infinity, i.e., for any ǫ > 0, there is a compact F ⊂ R such that |f(x)| < ǫ for x 6∈ F. Then
by F. Riesz’ theorem, (C0(R))

∗ = M(R), where M(R) is the space of complex regular Borel
measures on R.2 Since C0(R) is separable (continuous functions with compact support are
dense in C0(R)), every bounded subset of M(R) is weak* sequentially compact. Note that
L1(R) is contained in M(R), if we identify f ∈ L1(R) with the measure f(x)dx.

Theorem 1.5. Let f ∈ Lp(R), 1 ≤ p ≤ ∞, and g ∈ Lq, 1p + 1
q = 1. Then (f ∗ g)(x) exists

everywhere, belongs to C(R), and ||f ∗ g||C ≤ ||f ||p||g||q. Moreover, if 1 < p < ∞, or if p = 1
and g ∈ C0(R), then f ∗ g ∈ C0(R), i.e., f ∗ g ∈ C(R) and lim|x|→∞ |(f ∗ g)(x)| = 0.

Proof: Let 1 ≤ p < ∞. By Hölder’s inequality, |(f ∗ g)(x)| ≤ ||f ||p||g||q and so (f ∗ g)(x)
exists for every x ∈ R. Furthermore,

|(f ∗ g)(x + h)− (f ∗ g)(x)| ≤ ||f(·+ h)− f(·)||p||g||q,
and therefore f ∗ g ∈ C(R) by the continuity of f in mean. If p = ∞, the roles of f and g can
be interchanged.

Now let 1 < p < ∞ (obviously 1 < q < ∞ also). Given ǫ > 0, there is a finite interval
[−a, a] such that ∫

|t|≥a
|f(t)|pdt ≤ ǫp and

∫

|t|≥a
|g(t)|qdt ≤ ǫq.

If x ∈ R is such that |x| > 2a, then [x− a, x+ a] is contained in {t ∈ R : |t| > a}, and hence

|(f ∗ g)(x)| ≤ (

∫ a

−a
+

∫

|t|≥a
)|f(x− t)g(t)|dt

≤ (

∫ a

−a
|f(x− t)|pdt)1/p||g||q + ||f ||p(

∫

|t|≥a
|g(t)|qdt)1/q

≤ (

∫ x+a

x−a
|f(t)|pdt)1/p||g||q + ||f ||pǫ

≤ (

∫

|t|>a
|f(t)|pdt)1/p||g||q + ||f ||pǫ ≤ ǫ(||g||q + ||f ||p).

Thus, (f ∗ g)(x) tends to 0 as |x| → ∞, giving f ∗ g ∈ C0(R). The same method of proof
applies for the case p = 1, g ∈ C0(R). �

Theorem 1.6. If f, g ∈ L1(R), then (f ∗g)(x) exists a.e. and ||f ∗g||1 ≤ ||f ||1||g||1. Moreover,

(1.5) (f ∗ g)̂ (y) = f̂(y) · ĝ(y).

Proof: Note that the integral

∫
|f(x− t)g(t)|dx exists for a.e. t and

∫
|f(x− t)g(t)|dx = |g(t)| · ||f ||1.

2Every complex measure is bounded, see Hewitt and Stromberg [3] .
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Also note that the expression on the right belongs to L1(R). Hence, the integral
∫

(

∫
|f(x− t)g(t)|dx)dt = ||f ||1||g||1

exists as a finite number. Therefore, by Fubini’s theorem the integral
∫

(

∫
|f(x− t)g(t)|dt)dx

exists and is equal to ||f ||1||g||1. This implies that

∫
|f(x− t)g(t)|dt exists a.e. and belongs

to L1.
To prove (f ∗ g)̂ (y) = f (̂y) · ĝ (y), we observe that

(f ∗ g)̂ (y) =

∫
(

∫
f(x− t)g(t)dt)e−ixydx

=

∫
g(t)e−ity(

∫
f(x− t)e−iy(x−t)dx)dt = f̂(y)ĝ(y).

The change in the order of integration is justified by Fubini’s theorem. �

It is easy to see that convolution obeys the commutative and distributive laws of algebra in
L1(R), i.e., f ∗ g = g ∗ f and f ∗ (g+ h) = f ∗ g+ f ∗h. The natural question is whether there
is a multiplicative identity, i.e., given f ∈ L1(R), is there e ∈ L1(R) such that f ∗ e = f? The
answer is, in general, no since convolution exhibits continuity property and cannot be equal
to a discontinuous f. However, we may seek a sequence of functions en, called approximate
identity, with the property that en ∗ f → f.

Definition 1.3. An approximate identity en on R is a sequence of functions en such that

en ≥ 0,

∫
en(x)dx = 1, and for each δ > 0,

lim
n→∞

∫

|x|>δ
en(x)dx = 0.

Theorem 1.7. If f ∈ C0(R), then en ∗ f → f uniformly. If f ∈ Lp(R), 1 ≤ p < ∞, then
en ∗ f → f in Lp(R). If f ∈ L∞(R), then en ∗ f → f in the weak* topology of L∞(R) as a dual

of L1(R), that is,

∫
(en ∗ f)(x)g(x)dx →

∫
f(x)g(x)dx for all g ∈ L1(R).

Proof: Note that if f ∈ C0(R), then f is uniformly continuous on R and for any given
ǫ > 0, there is a δ > 0 such that for any t with |t| < δ, |f(x − t) − f(x)| < ǫ for all x ∈ R.
Hence,

|(en ∗ f)(x)− f(x)| ≤
∫

R
|f(x− t)− f(x)|en(t)dt

=

∫

|t|<δ
|f(x− t)− f(x)|en(t)dt+

∫

|t|≥δ
|f(x− t)− f(x)|en(t)dt

≤ ǫ+ 2M

∫

|t|>δ
en(t)dt,
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where M = supx∈R |f(x)|. Since limn→∞
∫
|x|>δ en(x)dx = 0, en ∗f → f uniformly. In the case

of f ∈ L∞(R), the proof is similar.
If f ∈ Lp(R), 1 ≤ p < ∞, then

∫

R

|(en ∗ f)(x)− f(x)|pdx ≤
∫

R

|
∫

R

(f(x− t)− f(x))en(t)dt|pdx

≤
∫

R

(

∫

R

|f(x− t)− f(x)|p |en(t)|dx)dt

=

∫

R

||f(· − t)− f(·)||pp |en(t)|dt.

Given any ǫ > 0, there is a δ > 0 such that ||f(· − t)− f(·)||p < ǫ whenever |t| < δ. Hence,
∫

R
||f(· − t)− f(·)||pp |en(t)|dt

=

∫

|t|<δ
||f(· − t)− f(·)||pp en(t)dt+

∫

|t|≥δ
||f(· − t)− f(·)||pp en(t)dt

≤ ǫp + 2||f ||pp
∫

|t|>δ
en(t)dt.

Since limn→∞
∫
|x|>δ en(x)dx = 0, the result follows. �

Theorem 1.8. If f has compact support and a continuous derivative, and g ∈ L1(R), then
f ∗ g ∈ L1(R) has a continuous derivative.

Proof: First, we prove

d

dx
(

∫
f(x− t)g(t)dt) =

∫
f ′(x− t)g(t)dt,

which is showing that

lim
h→0

∫ ∞

−∞
(
f(x+ h− t)− f(x− t)

h
)g(t)dt =

∫
f ′(x− t)g(t)dt.

Note that the integrand on the left converges to f ′(x − t)g(t) pointwise (in t) as h → 0.

Moreover, f(x+h−t)−f(x−t)
h = f ′(c), where c is between x + h − t and x− t. If f has compact

support S, then so does f ′. Therefore, |f(x+h−t)−f(x−t)
h | = |f ′(c)| ≤ supc∈S|f ′(c)| ≤ M with

some M > 0 for all t ∈ (−∞,∞). Now the desired limit follows from Lebesgue’s dominated
convergence theorem.

To prove that
∫
f ′(x− t)g(t)dt is continuous, we note that

|
∫

f ′(x+ h− t)g(t)dt−
∫

f ′(x− t)g(t)|

= |
∫

f ′(t)(g(x + h− t)− g(x− t))dt|

≤ ||f ′||c||g(· + h)− g(·)||1.

Then the (uniform) continuity of

∫
f ′(x− t)g(t)dt follows from the continuity of g in mean.

�
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The following corollary follows immediately from Theorems 1.7 and 1.8.

Corollary 1.1. Let en(x) be an approximate identity with compact support and continuous
derivative. Then for any f ∈ L1(R), en∗f provides a continuously differentiable approximation
to f in L1(R).

Proof: An obvious result from Theorem 1.8. �

Theorem 1.9. Let φ(x) ≥ 0 be a function defined on R such that φ has compact support and
continuous derivative, and

∫
φ(x)dx = 1. Then en(x) = nφ(nx) is an approximate identity

with compact support and continuous derivative.

Proof: We only need to show that for each ǫ > 0,

∫

|t|≥ǫ
en(t)dt = 0. In fact,

∫

|t|≥ǫ
nφ(nt)dt =

∫

|u|≥nǫ
φ(u)du → 0,

as n → ∞. �

Theorem 1.10. If f and
f(x)

x
3 are both integrable, then

lim
A,B→∞

∫ A

−B
f̂(y)dy = 0.

Proof: Observe that
∫ A

−B
f̂(y)dy =

∫ A

−B

∫ ∞

−∞
f(x)e−ixydxdy.

The integrand on the right side is integrable over the product space, so, by Fubini’s theorem,
∫ A

−B

∫ ∞

−∞
f(x)e−ixydxdy =

∫ ∞

−∞

∫ A

−B
f(x)e−ixydydx

=

∫ ∞

−∞
f(x)

eiBx − e−iAx

ix
dx.

The last integral tends 0 (as A,B → ∞), by Riemann-Lebesgue lemma. �

To derive the following inversion theorem, we need a simple fact, which can be verified by

a straightforward calculation: If g(x) = e−|x|, then ĝ(y) =
2

1 + y2
and

1

2π

∫ ∞

−∞
ĝ(y)dy = 1.

Corollary 1.2. If f is integrable in R and satisfies a Lipschitz condition at t, then

f(t) = lim
A,B→∞

1

2π

∫ A

−B
f̂(y)eitydy.

3The assumption that
f(x)

x
∈ L1(R) simply emphasizes that f behaves like a positive power of x at x = 0.

For example, If f ∈ Lip(α) for 0 < α ≤ 1 at x = 0, and f(0) = 0, then
f(x)

x
∈ L1(R).
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That is, f is the inverse Fourier transform of f̂ .

Proof: If t 6= 0, let h(x) = f(x + t). If f(x) satisfies |f(x) − f(t)| ≤ K|x − t|α for x
near t then for x near 0, h(x) satisfies the Lipschitz condition at t = 0: |h(x) − h(0)| =
|f(x+ t)− f(t)| ≤ K|x|α. Therefore, if we can show the corollary for t = 0, then for t 6= 0,

f(t) = h(0) = lim
A,B→∞

1

2π

∫ A

−B
ĥ(y)dy = lim

A,B→∞
1

2π

∫ A

−B
f̂(y)eitydy.

We may now assume that t = 0. Since f satisfies the Lipschitz condition at 0, if f(0) = 0, it

follows that
f(x)

x
∈ L1(R). Then by Theorem 1.10, lim

A,B→∞

∫ A

−B
f̂(y)dy = 0, which shows that

f(t) = lim
A,B→∞

1

2π

∫ A

−B
f̂(y)eitydy

holds as t = 0 and f(0) = 0.

If f(0) 6= 0, we reduce it to the case f(0) = 0. Let φ(x) = f(x)−f(0)g(x), where g(x) = e−|x|.
Then φ(0) = 0 and φ(x) satisfies the Lipschitz condition at t = 0. Therefore,

1

2π

∫ A

−B
φ̂(y)dy → 0,

as A,B → ∞. That is,

1

2π

∫ A

−B
f̂(y)dy − 1

2π

∫ A

−B
f(0)ĝ(y)dy → 0.

It follows that
1

2π

∫ A

−B
f̂(y)dy → f(0). �

Remark: For f ∈ L1(R), f̂ need not be in L1(R). Therefore, the above integral

∫ A

−B
f̂(y)eitydy

has to be understood as the limit of the integral from −B to A as A,B → ∞. Note that a

function f ≥ 0 is integrable on R if limA,B→∞
∫ A
−B f(x)dx exists. Therefore, a function f is

integrable on R if both f+ and f− are integrable on R. By this definition, f and |f | are either

both integrable or not integrable. Hence, it may happen that f̂ 6∈ L1(R), yet the above limit

exists. Let m(x) = χ[−a,a](x). Clearly, m̂ (y) =
2 sin ay

y
6∈ L1(R), but

m(x) = lim
A,B→∞

1

2π

∫ A

−B
m̂(y)eixydy, x 6= ±1.

With improper Riemann integral in mind, we may say f equals the inverse Fourier transform

of f̂ at each Lipschitz point.

Theorem 1.11.

(1.6)
1

2π

∫ ∞

−∞

2

1 + t2
eixtdt = e−|x|.
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Proof: Assuming that x > 0 and integrating

I =
1

2π

∫

ΓR

2

1 + z2
eixzdz,

where ΓR consists of the upper semicircle CR and the line segment [−R,R] on the x-axis, we
see that

I = Resz=i
2

1 + z2
eixz = e−x

and that the integral along [−R,R] gives

I =
1

2π

∫

ΓR

2

1 + t2
eixtdt,

while, if x > 0, then
1

2π

∫

CR

2

1 + z2
eixzdz → 0

as R → ∞. 4 Thus, if x > 0, 1
2π

∫∞
−∞

2
1+t2

eixtdt = e−x. Similarly, if x < 0 then 1
2π

∫∞
−∞

2
1+t2

eixtdt =
ex. Hence,

1

2π

∫ ∞

−∞

2

1 + t2
eixtdt = e−|x|. �

In the following, we will calculate the Fourier transform of a Gaussian function which will
be useful in proving the inversion theorem. The theorem below simply states that Fourier
transform of a Gaussian function is a Gaussian.

Theorem 1.12.

(1.7) (e−x2

)̂ (y) =
√
πe−y2/4.

Proof: First, let u be real. We have
∫ ∞

−∞
e−x2+2xudx = eu

2

∫ ∞

−∞
e−(x−u)2dx = eu

2

∫ ∞

−∞
e−t2dt =

√
πeu

2

.

Clearly, the function defined by
∫ ∞

−∞
e−x2+2xzdx

is an entire function5, and by above calculation, it coincides with the entire function
√
πez

2

along the x-axis. Therefore, for all z,
∫ ∞

−∞
e−x2+2xzdx =

√
πez

2

.

4(Jordan’s Lemma) Suppose that f is an analytic function in the upper half plane except at a finite number
of singularities and |f(z)| → 0 as |z| → ∞ for 0 ≤ Arg(z) ≤ π. Then, if x > 0,

∫
CR

eixzf(z)dz → 0 as R → ∞.
5See the theorem in complex analysis. Suppose that f(z, w) is a continuous function of z ∈ D and w ∈ C,

where D is a region and C is a contour that is a piecewise smooth curve w(t) = u(t) + iv(t), t0 ≤ t ≤ t1,

with continuous u′ and v′. Suppose that for each w ∈ C, f(z, w) is an analytic function in z ∈ D. Then
F (z) =

∫
C
f(z, w)dw is analytic in D and F ′(z) can be found by differentiating under the integral sign.

If C is a contour going to infinity such that any bounded part of it is regular (no sharp corner) and if the
above conditions are satisfied on any bounded part of C, and if

∫
C
f(z, w)dw converges uniformly in z ∈ D,

then the above results hold.
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In particular, let z = −iy
2 . Then we have

∫ ∞

−∞
e−x2−ixydx =

√
πe−y2/4. �

Theorem 1.13 (Inversion Theorem). Let f ∈ L1(R), and f̂ ∈ L1(R), then

(1.8) f(x) =
1

2π

∫ ∞

−∞
f̂(y)eixydy

for almost all real x ∈ R. The integral is commonly known as the inverse Fourier transform.

Proof: Consider the Gauss-Weierstrass Kernel, W (x, α) = 1√
πα

e−
x2

α . A straightforward

calculation shows that W (·, α)̂ (t) = e−
αt2

4 . By integrating f̂ against W ,̂ and then applying
Fubini’s theorem and the fact that W (x, α) is an approximate identity, we get

∫ ∞

−∞
f̂(ξ)eiξxW (·, α)̂ (ξ)dξ

=

∫ ∞

−∞
(

∫ ∞

−∞
f(t)e−iξtdt)eiξxe−

αξ2

4 dξ

=

∫ ∞

−∞
f(t)(

∫ ∞

−∞
e−

αξ2

4 e−iξ(t−x)dξ)dt

=

∫ ∞

−∞
f(t)2πW (t− x, α)dt

= 2π

∫ ∞

−∞
f(x− t)W (t, α)dt → 2πf(x) a.e. as α → 0+

On the other hand, by Lebesgue’s dominated convergence theorem,

lim
α→0+

∫ ∞

−∞
f̂(ξ)eiξxW (·, α)̂ (ξ)dξ =

∫ ∞

−∞
f̂(ξ)eiξxdξ.

The theorem follows. �

As an application of the inversion theorem, we now prove that the Fourier transform of a
product is the convolution of the Fourier transforms.

Theorem 1.14. Assume that f, g ∈ L1(R) and f̂ ∈ L1(R) (or ĝ ∈ L1(R)). Then,

(1.9) (fg)̂ (x) =
1

2π
(f̂ ∗ ĝ)(x).
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Proof: By the inversion theorem, f is bounded and so, fg ∈ L1(R). Hence,

(fg)̂ (x) =

∫ ∞

−∞
f(y)g(y)e−ixydy

=

∫ ∞

−∞
g(y)e−ixy(

1

2π

∫ ∞

−∞
f̂(t)eiytdt)dy

=
1

2π

∫ ∞

−∞
f̂(t)(

∫ ∞

−∞
g(y)e−ixyeiytdy)dt

=
1

2π

∫ ∞

−∞
f̂(t)ĝ(x− t)dt

=
1

2π
(f̂ ∗ ĝ)(x).

The change in the order of integration is justified by Fubini’s theorem, since due to bounded-
ness of f̂ , f̂g ∈ L1(R). �

We now investigate the question of uniqueness of Fourier transform, i.e, f̂ = ĝ implies f = g.
To show this, since Fourier transform is a linear operator, it suffices to show that f̂ = 0 implies
f = 0 a.e.

Theorem 1.15 (Uniqueness Theorem). If f ∈ L1(R) and f̂ = 0 everywhere (f̂ is always
continuous), then f = 0 a.e.

Proof: Let en(x) be an approximate identity with compact support and continuous de-

rivative. By Theorem 1.6, (en ∗ f )̂ = ênf̂ = 0 everywhere. Since by Theorem 1.8, en ∗ f
is continuous and differentiable, by the inversion theorem, en ∗ f = 0 everywhere. But by
Theorem 1.7, en ∗ f → f in L1(R); so it follows that f = 0 a.e. �

Definition 1.4. For µ ∈ M(R) (bounded Borel measure on R, i.e., |µ|(R) < ∞), define the
Fourier-Stieltjes transform µ̂ (y) as

µ̂ (y) =

∫ ∞

−∞
eixydµ(x).

Clearly, the Fourier-Stieltjes transform defines a bounded linear transform from M(R) to
C.

Theorem 1.16 (Uniqueness Theorem). If µ̂(y) = 0 for a.e. y, then µ = 0.

Proof: Since (C0(R))
∗ = M(R), to prove µ = 0 we need only to show that for all h ∈

C0(R),

∫
h(t)dµ(t) = 0. This is equivalent to showing that for all h ∈ C0(R), (h ∗ µ)(0) = 0,

where (h ∗ µ)(x) =
∫ ∞

−∞
h(x− t)dµ(t). Observe also that h(x) ∈ C0(R) if and only if h(−x) ∈

C0(R).
Assume that µ̂ = 0. Then for all f ∈ L1(R), fˆ∗ µ(x) = (f ∗ µ̂ )(x) = 0. Hence, if we prove

that {fˆ : f ∈ L1(R)} is dense in C0(R), then for each h ∈ C0(R) there is fn ∈ L1(R) such
that fn̂ → h in C0(R). Since fn̂ ∗ µ(x) → h ∗ µ(x) at each x, h ∗ µ(x) = 0.
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To show that {fˆ: f ∈ L1(R)} is dense in C0(R), we let

F (x) =
1√
2π

(
sin(x/2)

x/2
)2

and let Fρ(x) = ρF (ρx). Consider the integral

(h ∗ Fρ)(x) =
2

πρ

∫ ∞

−∞
h(x− u)

sin2(ρu/2)

u2
du.

Define

F = {(h ∗ Fρ)(x) : h ∈ C0(R)
⋂

L1(R); ρ > 0}.
Clearly, F is a subset of C0(R)

⋂
L1(R) and is dense in C0(R).

Let h ∈ C0(R)
⋂

L1(R). Then (h ∗ Fρ)̂ (y) = ĥ (y)(Fρ )̂ (y). Since h ∈ L1, ĥ ∈ C0(R).
Moreover,

Fρ̂ (y) =

{
1− |y|

ρ if |y| ≤ ρ

0 if |y| > ρ

belongs to L1(R). Therefore, (h ∗ Fρ)̂ ∈ L1(R). It follows from the inversion theorem that
h∗Fρ is the Fourier transform of a function in L1(R). Hence, F is a subset of {fˆ: f ∈ L1(R)}.
Since F is dense in C0(R), {fˆ: f ∈ L1(R)} is dense in C0(R). �

2. Kernels on R

We define the Dirichlet, Fejér, and Poisson kernels on R by defining their Fourier transforms,
see H. Helson [2].

D̂t(y) =

{
1 if |y| ≤ t
0 if |y| > t

K̂t(y) =

{
1− |y|

t if |y| ≤ t
0 if |y| > t

and

P̂u(y) = e−u|y|.

The parameters t and u are positive, having limits ∞ and 0+, respectively.
Taking the inverse Fourier transform of D̂t(y) we get the Dirichlet kernel

Dt(x) =
sin tx

πx
.

Since D̂t(y) ∈ L1(R) and every point y 6= t is a Lipschitz point of D̂t(y), it follows from the
inversion theorem that

D̂t(y) = lim
A,B→∞

∫ A

−B
Dt(x)e

−ixydx, y 6= ±t.

That is, although Dt(x) is not integrable, its Fourier transform in the generalized sense is

D̂t(y). Since D̂t(y) is discontinuous, Dt(x) cannot be integrable. Clearly, the Dirichlet kernel
does not belong to the family of approximate identities.

To calculate the Fejér kernel, it follows from definitions that
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(D̂t ∗ D̂t)(y) =

∫ ∞

−∞
D̂t(y − τ)D̂t(τ)dτ

=

∫ t

−t
D̂t(y − τ)dτ

=

∫ y+t

y−t
D̂t(u)du.

To calculate the last integral, we consider two cases. If |y| ≥ 2t, then the intervals [y−t, y+t]
and [−t, t] are disjoint so that the integral equals zero; if |y| < 2t, then either y + t or y − t is
in (−t, t), but not both, so that the integral equals 2t− |y|. Combining both results we get,

(D̂t ∗ D̂t)(y) =

∫ y+t

y−t
D̂t(u)du =

{
2t− |y| if |y| ≤ 2t
0 if |y| > 2t

= 2tK̂2t(y).

Also, by Theorem 1.14 we have that,

(Dt ·Dt)̂ (x) =
1

2π
(D̂t ∗ D̂t)(x)

=
1

2π
(2tK̂2t(x)).

Therefore, it follows from the inversion theorem that (Dt ·Dt)(x) =
1
2π (2tK2t(x)), or

2tK2t(x) =
1

2π
(2πDt(x))

2.

Hence, we obtain the Fejér kernel

Kt(x) =
1

2πt
(
sin( tx2 )

x
2

)2.

Kt(x) is positive and integrable. Its Fourier transform is the function K̂t(y) by the inversion

theorem. Moreover,

∫
Kt(x)dx = 1 because K̂t(y) = 1 at y = 0. For any ǫ > 0,

∫

|x|>ǫ
Kt(x)dx ≤ 1

2πt

∫

|x|>ǫ

4

x2
dx → 0

as t → ∞. Hence (Kt) is an approximate identity on R.
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A direct computation of the inverse Fourier transform of P̂u(y) gives

Pu(x) =
1

2π

∫ ∞

−∞
P̂u(y)e

ixydy

=
1

2π

∫ ∞

−∞
e−u|y|eixydy

=
1

2π

∫ 0

−∞
euyeixydy +

1

2π

∫ ∞

0
e−uyeixydy

=
1

2π

∫ 0

−∞
ey(u+ix)dy +

1

2π

∫ ∞

0
e−y(u−ix)dy

=
1

2π
(

1

u+ ix
+

1

u− ix
)

=
u

π(u2 + x2)
.

This gives the formula for Poisson kernel

Pu(x) =
u

π(u2 + x2)
.

Clearly, Pu is positive, and we check that

lim
u→0+

∫ ǫ

−ǫ
Pu(x)dx = 1

for each ǫ > 0. Thus (Pu) is an approximate identity with u ↓ 0.

Theorem 2.1 (Inversion Theorem). If f and f̂ are both integrable, then f(x) a.e. equals to

a continuous function which is the inverse Fourier transform of f̂ , that is,

(2.1) f(x) =
1

2π

∫
f̂(y)eixydy, a.e.

Proof: Pu ∗ f is continuous. We have,

(Pu ∗ f)(x) =

∫ ∞

−∞
Pu(x− t)f(t)dt

=
1

2π

∫ ∞

−∞
(

∫ ∞

−∞
e−u|y|eiy(x−t)dy)f(t)dt

=
1

2π

∫ ∞

−∞
e−u|y|eixy(

∫ ∞

−∞
f(t)e−iytdt)dy

=
1

2π

∫ ∞

−∞
e−u|y|eixy f̂(y)dy.

Note that the Pu∗f converges to f(x) in L1(R) so that Pu∗f converges to f almost everywhere
at least on a subsequence of u ↓ 0. We then obtain

f(x) = lim
u↓0

1

2π

∫ ∞

−∞
e−u|y|eixy f̂(y)dy =

1

2π

∫
f̂(y)eixydy.

The last limit holds because of Lebesgue’s dominated convergence theorem. �
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Definition 2.1. For any f ∈ Lp(R), 1 ≤ p < ∞, we define the Poisson integral of f as

(2.2) F (x+ iu) = Pu ∗ f(x) = 1

π

∫

R

uf(s)

u2 + (x− s)2
ds.

Since Pu ∈ Lq(R), q conjugate exponent of p, F (x+ iu) is defined as a continuous function
of x. 6 Moreover, F (x+ iu) provides a harmonic extension of f to the upper half plane. This
can be verified directly.

Theorem 2.2. The Poisson integral has a semigroup property: Pu ∗Pv = Pu+v for all positive
u and v.

Proof: We have that

ˆ(Pu ∗ Pv)(y) = P̂u(y) · P̂v(y) = e−u|y| · e−v|y|

= e−(u+v)|y| = ˆPu+v(y).

It follows from the inversion theorem that Pu ∗ Pv = Pu+v. �

Theorem 2.3. ||F (· + iu)||p increases as u ↓ 0, for any p, 1 ≤ p < ∞. (if p = 1, consider
Pu ∗ µ). Similarly, if f is bounded, sup

x∈R
|F (x+ iu)| increases as u ↓ 0.

Proof: Let v < u be given. Let r = u− v ≥ 0. Then

||Pu ∗ f ||p = ||Pv+r ∗ f ||p = ||(Pr ∗ Pv) ∗ f ||p ≤ ||Pr||1||Pv ∗ f ||p = ||Pv ∗ f ||p. �

Lemma 2.1. Let fu(x) = F (x+ iu) be a harmonic function in the upper half plane such that

sup
u>0

||fu(·)||p = A < ∞.

Then
fu+v(x) = (Pu ∗ fv)(x).

Proof: fu+v(x) = (Pu ∗ fv)(x) says that the values of F (u+ ix) at the level u+ v are the
values of F (u+ ix) at the level v convolved with the Poisson kernel with parameter u. 7

We may assume that F is real. Fix v > 0. Define G(x+ iu) = Pu ∗ fv(x) (G is the Poisson
integral of the values of F at level v). G(x+ iu) is harmonic in u > 0 and supu>0 ||G(·, u)||p ≤
||fv(·)||p < ∞. Note that G(x+iu) has boundary value (pointwise limit) fv(x) as u → 0, which
can be simply viewed as the value of G(x+iu) when u = 0. Therefore, G(x+iu)−F (x+iu+iv)
is a harmonic function in u > 0, satisfying supu>0 ||G(·+iu)−F (·+iu+iv)||p < ∞, continuous
on the closed upper half plane and null on the real axis u = 0. Now, let

H(x+ iu) = G(x+ iu)− F (x+ iu+ iv).

We must show that H(x+ iu) vanishes for u > 0.
Let h ∈ L1(R)

⋂
Lq(R), where q is the conjugate exponent of p. Define

L(x+ iu) =

∫ ∞

−∞
h(x− y)H(y + iu)dy.

6If f ∈ Lp(R), 1 ≤ p ≤ ∞, and g ∈ Lq(R), 1

p
+ 1

q
= 1, then (f ∗ g)(x) exists everywhere, belongs to C(R),

and ||f ∗ g||c ≤ ||f ||p||g||q .
7In periodic case, Pr ∗ fs = frs is proved by using the fact that a harmonic function is the real part of an

analytic function.
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Then L(x+ iu) is continuous on the closed upper half plane, harmonic in the upper half plane,
and is null on the real axis. Moreover, supu>0 |L(x + iu)| ≤ ||h||q supu>0 ||H(· + iu)||p < ∞,
that is, L(x + iu) is bounded on the upper half plane. Extend this function to a bounded
harmonic function on the whole plane by setting L(x− iu) = −L(x+ iu) (Reflection Principle
for Harmonic Functions). By Liouville’s theorem, L is constant. Letting h range over an
approximate identity shows that H is a constant, and since it vanishes on the real axis, is
null. �

Theorem 2.4. Let fu(x) = F (x+ iu) be a harmonic function in the upper half plane. Then
there exists a f ∈ Lp(R), 1 < p ≤ ∞, so that fu(x) = Pu ∗ f(x) if and only if fu(x) ∈ Lp(R)
with the norm bounded by a constant independent of u > 0, that is,

sup
u>0

Au = sup
u>0

||fu(·)||p = A < ∞.

Proof: Necessity: If we think of Pu∗f(x) as a family (with continuous parameter u > 0)
of functions fu(x) defined on R, then as p > 1,

||fu||p = ||Pu ∗ f ||p ≤ ||Pu||1||f ||p.
Hence, {fu}, u > 0, is bounded in Lp(R).

Sufficiency: Assume that fu(x) = F (x+iu) is bounded in Lp(R). If 1 < p ≤ ∞, by Banach-
Alaoglu’s theorem (view Lp(R) as the dual of separated normed space Lq(R), 1 ≤ q < ∞),
{fu} is weakly* sequentially compact in Lp(R), that is, there is an element f of Lp(R) such
that every *-neighborhood of f contains fu for arbitrary small positive u. In other words, there
is a subsequence fvj of fu that is weakly* convergent to some f ∈ Lp(R) as vj ↓ 0+, i.e., for

all g ∈ Lq(R),

∫
fvjg →

∫
fg as vj ↓ 0+. In particular, since for each x, Pu(x − t) ∈ Lq(R),

1 ≤ q < ∞, we have Pu ∗fvj (x) =
∫

Pu(x− t)fvj(t)dt tends to

∫
Pu(x− t)f(t)dt = Pu ∗ f(x)

as vj ↓ 0+. On the other hand, Pu ∗ fvj (x) = fu+vj(x) (see Lemma 2.1), which converges to
fu(x) by the continuity of F (x+ iu). Therefore, Pu ∗ f(x) = fu(x) for all x.

If 1 < p < ∞, then Pu ∗ f → f in the norm of Lp(R) (Fejer’s theorem). If p = ∞ then
Pu ∗ f → f in weak* topology in L∞(R), i.e., for every s(x) ∈ L1(R), limu↓0+

∫
[Pu ∗ f(x) −

f(x)]s(x)dx = 0. (For a proof, see Butzer [1].) �

Theorem 2.5. Let fu(x) = F (x+ iu) be a function harmonic in the upper plane u > 0. Then
there is a unique measure µ ∈ M(R) such that

fu(x) = F (x+ iu) = Pr ∗ µ(x) =
∫ ∞

−∞
Pu(x− t)dµ(t)

if and only if

Au =

∫
|F (x+ iu)|dx ≤ K, ∀ u > 0.

Moreover, ||µ|| = limu↓0 Au.

Proof: Necessity: If we think of Pu∗µ(x) as a family (with continuous parameter u > 0)
of functions defined on R, then

||fu||1 = ||Pu ∗ µ|| ≤ ||Pu||1||µ||.
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Therefore, {fu}, u > 0, is bounded in L1(R).

Sufficiency: By assumption, ||fu||1 ≤ K, i.e., ||fu(x)dx||M(R) = ||fu||1 ≤ K, ∀u > 0.
Since C0(R), as the pre-dual of M(R), is separable normed space, by Banach-Alaoglu theorem
the closure of {fu(x)dx} in M(R) is weak* sequentially compact. Therefore, there is a sub-
sequence {fvj}(x)dx of fu(x)dx that converges to some µ ∈ M(R) in weak* topology. That
is, ∫

h(e−it)fvj (t)dt →
∫

h(e−it)dµ(t), vj → 0

for each h ∈ C0(R). In particular, since for each x, Pu(x− t) ∈ C0(R),∫
Pu(x− t)fvj (t)dt →

∫
Pu(x− t)dµ(t), vj → 0.

On the other hand,
Pu ∗ fvj (x) = fu+vj(x) → fu(x), vj → 0.

Hence, fu(x) =

∫
Pu(x− t)dµ(t) for all x.

We show that ||µ|| = limu↓0 Au. Note that µ = limj→∞ fvj (x)dx in the weak* topology of
M(R) as the dual of C0(R). It follows that ||µ|| ≤ lim infj→∞Avj where Avj = ||fvj ||1 (For
a proof, see the Appendix). Since Au increases with u ↓ and Au ≤ K, ||µ|| ≤ limu→0Au.
Furthermore, the inequality cannot be strict. Note that fu = Pu ∗ µ and ||fu||1 ≤ ||Pu||1||µ||.
Therefore, Au = ||fu||1 ≤ ||µ|| for every u > 0. If the inequality were strict, we would have
Au ≤ ||µ|| < limu→0Au for u > 0, which is impossible.

As to the norm convergence of ||fu − µ||M(R) → 0 as u → 0, if µ is absolutely continuous

then µ = f(x)dx for some f ∈ L1(R). Hence fu = Pu ∗ µ is indeed fu = Pu ∗ f. Thus, by
Fejer’s theorem, ||fu − f ||1 → 0. That is, ||fu − µ||M(R) → 0 as u → 0. �

3. The Plancherel Theorem

In this section we define

f̂(y) =
1√
2π

∫ ∞

−∞
f(x)e−ixydx.

Lemma 3.1. Let C be the collection of continuously differentiable functions with compact
support. Then C ⊂ L1(R)

⋂
L2(R) and C is a dense subspace of L2(R).

Proof: Let f ∈ L2(R). Define fk(x) = f(x) if |x| ≤ k; and fk(x) = 0 if |x| > 0. Then
fk → f in L2(R). Furthermore, we may choose an approximate identity with compact support

and continuous derivative, for instance, let h(x) = e−
1

x2 for x ≥ 0 and h(x) = 0 for x < 0.
Then h ∈ C∞(R) and φ(x) = h(x+1)h(1−x) ∈ C∞(R) and has compact support [−1, 1], and∫
φ(x)dx = 1, when properly normalized. Let en(x) = nφ(nx). Then en(x) is an approximate

identity with compact support and continuous derivative (in fact, C∞(R)). Since for each
k, fk has compact support, en ∗ fk provides a continuously differentiable approximation with
compact support to fk in L2(R). Hence C is dense in L2(R).

Lemma 3.2. If f ∈ C, then f̂ ∈ L2(R). Moreover, ||f̂ ||2 = ||f ||2. Hence, the Fourier transform

f̂ (as defined in this section) is isometric from C to F(C) as subspaces of L2(R).
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Proof: Let f ∈ C. Define f̃(x) = f(−x). Then f ∗ f̃(x) ∈ C. By the inversion theorem, at

every point x where (f ∗ f̃)(x) satisfies the Lipschitz condition, we have

(f ∗ f̃)(x) = lim
A,B→∞

1√
2π

∫ A

−B

̂f ∗ f̃(y)eixydy.

Since f ∗ f̃(x) ∈ C, it satisfies the Lipschitz condition at every point, in particular, at x = 0,
we have

(f ∗ f̃)(0) = lim
A,B→∞

1√
2π

∫ A

−B

̂f ∗ f̃(y)dy.

Note that ||f ||2 = (f ∗ f̃)(0), ̂̃f = f̂ , and
1√
2π

̂f ∗ f̃(y) = |f̂(y)|2. We have ||f ||2 = ||f̂ ||2.

The Fourier transform is an isometry defined on C. Since it is defined on a dense subspace
of L2(R), it has a unique continuous extension to an isometry F of all of L2(R) into itself,
which is defined as follows: for f ∈ L2(R), let fn ∈ C such that fn → f. Since ||Ff ||2 = ||f ||2
for all f ∈ C, f̂n is a Cauchy sequence in L2(R) and so converges to some g ∈ L2(R). We define
F(f) = g. Let us show ||F(f)||2 = ||f ||2 for all f ∈ L2(R). Let f ∈ L2(R) and fk ∈ C → f.
Then by definition of F , ||Ffk||2 → ||Ff ||. On the other hand, ||Ffk|| = ||fk||2 → ||f ||2.
Therefore, F is an isometry of L2(R) into L2(R). We will prove that F is indeed ‘onto’. �

Lemma 3.3. The Fourier transform of L2(R) is onto, i.e., E = {F(f) : f ∈ L2(R)} = L2(R).

Proof: First we prove that E is dense in L2(R).
We prove that for each h ∈ C, < Ff, h >=< f, h∗ > for all f ∈ L2(R), where h∗ is defined

by the formula:

h∗(x) =
1√
2π

∫
h(y)eixydy.

In fact, for f, h ∈ C we have ∫
f̂h =

∫
fh∗,

that is, < Ff, h >=< f, h∗ > for all f ∈ C. It follows that < Ff, h >=< f, h∗ > for all
f ∈ L2(R).

The operator F∗ defined on L2(R) by F∗h = h∗ is called the adjoint operator of F . (see the
Appendix). Note that F is essentially the Fourier transform, and therefore, is an isometry.
Thus its null space N(F∗) contains 0 only (uniqueness theorem for F.T.). Since N(T ∗)⊥ =
R(T ) (see the Appendix), it follows that E, the range of F , is dense in L2(R).

To prove E = L2(R), we show that E is closed. Take g ∈ E. Then there exists gk ∈ E
with gk → g. Let fk be such that Ffk = gk. Since F is an isometry, fk is a Cauchy sequence
converging to some f ∈ L2(R) and we must have Ff = g. Since E = L2(R) and E is closed,
E = L2(R). �

Theorem 3.1 (Plancherel). The Fourier transform F is a unitary operator on L2(R) and the
inverse Fourier transform, F−1, can be obtained by (F−1f)(x) = (Ff)(−x) for all f ∈ L2(R).

Proof: Since F is an isometry of L2(R) onto L2(R), F is a unitary operator on L2(R). It
follows from the properties of a unitary operator that F−1 = F∗ (see the Appendix). The form
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of F∗ can be easily found when acting on f ∈ C : Let g ∈ C. A change of order of integration
gives ∫

(Fg)(x)f(x)dx =

∫
g(x)f∗(x)dx,

i.e., < F(g), f >=< g, f∗ > for all g ∈ C, where f∗ = F∗(f) is defined by the formula:

f∗(x) =
1√
2π

∫

R
f(y)eixydy.

It follows that (F−1f)(x) = (Ff)(−x) for all f ∈ C. For f ∈ L2(R), we take fk ∈ C with
fk → f in L2(R). Then

(F−1f)(x) = l.i.m.(F−1fk)(x) = l.i.m.(Ffk)(−x) = (Ff)(−x).

This shows that (F−1f)(x) = (Ff)(−x) for all f ∈ L2(R). �

Lemma 3.4 (Multiplication Formula). If f, g ∈ L1(R), then

(3.1)

∫
f̂g =

∫
f ĝ.

Proof: Since F (x, t) = f(t)g(x)e−itx is a measurable function on R×R and ||F (x, t)||L(R2) =
||f ||1||g||1, we can apply Fubini’s theorem to obtain

∫
f̂(t)g(t)dt =

∫
f(t)(

∫
g(x)e−ixtdx)dt =

∫
f(t)ĝ(t)dt. �

As an application of the multiplication formula, we prove the following Fourier inverse
theorem.

Lemma 3.5. If f ∈ L1(R), then the Abel mean of the Fourier integral converges to f(x) a.e.,
i.e., for almost every x,

(3.2) lim
ǫ→0

1

2π

∫
f̂(t)e−ǫ|t|eixtdt = f(x).

Proof: Let
g(t) = e−ǫ|t|eixt, ǫ > 0.

Then

ĝ(t) = 2πPǫ(x− t) =
2ǫ

ǫ2 + (x− t)2
.

Using the multiplication formula, we get, if f ∈ L1(R),

1

2π

∫
f̂(t)e−ǫ|t|eixtdt =

∫
f(t)Pǫ(x− t)dt.

Since the latter convolution converges to f(x) a.e., 8

lim
ǫ→0

1

2π

∫
f̂(t)e−ǫ|t|eixtdt = f(x). �

8At every point of x for which∫ h

0

[f(x + u) + f(x− u)− 2f(u)]du = o(h),

lim f(t)Pǫ(x− t)dt → f(x).
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Corollary 3.1 (Inversion Theorem). If f ∈ L1(R) so that f̂ ∈ L1(R), then for a.e. x,

(3.3)
1

2π

∫
f̂(t)eixtdt = f(x).

In particular, the inversion formula holds at every x for which
∫ h

0
[f(x+ u) + f(x− u)− 2f(u)]du = o(h)

holds.

Proof: If f̂ ∈ L1(R), the corollary follows from Lemma 3.5 by applying the Lebesgue
Dominated Convergence Theorem. �

Lemma 3.6. If f(x) ∈ L1(R) is continuous at x = 0 such that f̂ ≥ 0, then f̂ ∈ L1(R) and

f(x) =
1

2π

∫
f̂(y)eixydy, a.e.

In particular,

f(0) =
1

2π

∫
f̂(y)dy.

Proof: We need only to show that f̂ ∈ L1(R). Then the rest of the statements follows
from the inversion theorem.

Note that Corollary 3.1 holds at every point x for which
∫ h

0
[f(x+ u) + f(x− u)− 2f(u)]du = o(h).

In particular, it holds at the point x = 0 of continuity of f, i.e.,

1

2π

∫
f̂(t)e−ǫ|t|dt = f(0).

By Fatou’s lemma, ∫
f̂(y)dy ≤ lim

ǫ→0

∫
f̂(t)e−ǫ|t|dt = f(0).

Since 0 ≤ f̂ , f̂ ∈ L2(R). �

Lemma 3.7. If f ∈ L1(R)
⋂

L2(R), then f̂ ∈ L2(R) and ||f̂ ||2 = ||f ||2.
Proof: Define f̃(x) = f(−x). Since f, f̃ ∈ L2(R), h = f ∗ f̃ ∈ L1(R) and is continuous.

Further, ĥ(y) = |f̂(y)|2 ≥ 0. Hence, ĥ ∈ L1(R) and h(0) =
∫
ĥ(y)dy. It follows that

∫
|f̂(y)|2dy =

∫
ĥ(y)dy = h(0) = f ∗ f̃(0) =

∫
|f(x)|2dx. �

Since the Fourier transform is an isometry of L1(R)
⋂

L2(R), it has a unique continuous
extension to an isometry F of all of L2(R) into itself with ||Ff ||2 = ||f ||2 for all f ∈ L2(R). For
f ∈ L2(R), define fn(x) = f(x) if |x| ≤ n and fn(x) = 0 if |x| > n. Then fn ∈ L1(R)

⋂
L2(R)

and fn → f in L2(R). Define Ff = l.i.m.f̂n. We’ll prove that F is indeed ‘onto’.
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Lemma 3.8 (Multiplication Formula for L2(R)). If f, g ∈ L2((R) then

(3.4)

∫
f̂g =

∫
f ĝ.

Proof: Fix g ∈ L1(R)
⋂

L2(R) first. Let f ∈ L2(R) and fk ∈ L1(R)
⋂

L2(R) with

l.i.m.fk = f. Since ĝ ∈ L2(R),

∫
fkĝ →

∫
f ĝ. It follows from the multiplication formula for

L1(R) that

∫
fkĝ =

∫
f̂kg →

∫
f̂g. Hence for f ∈ L2(R) and g ∈ L1(R)

⋂
L2(R),

∫
f̂g =

∫
f ĝ.

Starting with this formula, for f, g ∈ L2(R), we approximate g by gk ∈ L1(R)
⋂

L2(R). �

Theorem 3.2 (Plancherel). The Fourier transform F is a unitary operator of L2(R) and the
inverse Fourier transform, F−1, can be obtained by (F−1f)(x) = (Ff)(−x) for all f ∈ L2(R).

Proof: We have already proved that F is an isometry, we only need to show F maps
L2(R) onto L2(R), i.e., E = {F(f) : f ∈ L2(R)} = L2(R). As proven before, E is closed.
Assume that E 6= L2(R). Then there exists g 6= 0, g ∈ L2(R) \ E, such that < g, f >= 0 for

all f ∈ E, or < g, ĥ >= 0 for all h ∈ L2(R). It follows from the multiplication formula that∫
hĝ = 0 for all h ∈ L2(R). In particular, taking h = ĝ ∈ L2(R), ||ĝ||2 = 0 = ||g||2 and g = 0

a.e., contrary to the assumption g 6= 0. Therefore, F is onto and so is a unitary operator of
L2(R). �

4. Appendix

4.1. Weak/Weak * Topologies in Linear Spaces. Let X be a topological linear space
and X ′ be its conjugate space of all continuous linear functionals on X. 9

The weak topology σ(X,X ′) on X is defined as follows:
Let F be a nonempty finite subset of X ′. Define

pF (x) = maxx′∈F |x′(x)|, x ∈ X.

pF (x) is a seminorm on X. σ(X,X ′) is the locally convex topology on X defined by the family
of all seminorms pF (x), where F ranges over all finite subsets of X ′. A base at x0 ∈ X for this
topology is given by sets of the form

UF,r = {x : |x′(x)− x′(x0)| < r for each x′ ∈ F}
=

⋂

x′∈F
{x : |x′(x)− x′(x0)| < r},

where r > 0 and F is a nonempty finite subset of X ′. σ(X,X ′) is the weakest topology on X
for which all the elements of X ′ are continuous.

9When X is a Hausdorff locally convex space, the Hahn-Banach theorem ensures the existence of enough
elements in X ′ to make possible a rich theory of the duality between X and X ′.
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A sequence {xn} in a normed linear space X converges to an element f ∈ X ′ in weak
topology if and only if limn→∞ f(xn) = f(x) for all f ∈ X ′.

The weak* topology σ(X ′,X) on X ′ is defined as follows:
Let A be a nonempty finite subset of X. Define

pA(x
′) = maxx∈A|x′(x)|, x′ ∈ X ′.

pA(x
′) is a seminorm on X ′. σ(X ′,X) is the locally convex topology on X ′ defined by the

family of all seminorms pA(x
′), where A ranges over all finite subsets of X. A base at x′0 ∈ X ′

for this topology is given by sets of the form

UA,r = {x′ : |x′(x)− x′0(x)| < r for each x ∈ A}
=

⋂

x∈A
{x : |x′(x)− x′0(x)| < r},

where r > 0 and A is a nonempty finite subset of X. σ(X ′,X) is the weakest topology on X ′

for which x′(x), as a linear functional acting on X ′, is continuous.

A sequence {fn} in X ′ of a normed linear space X converges to an element f ∈ X ′ in weak*
topology if and only if at each x, limn→∞ fn(x) = f(x), see K. Yosida [4].

Theorem 4.1. If X is a Banach space, then {fn} ⊂ X ′ converges weakly* to an element
f ∈ X ′ if and only if (1). {||fn||} is bounded; and (2). lim fn(x) = f(x) for all x in a dense
subset (with respect to norm topology) of X.

Proposition 4.1. In X = l2, for 1 ≤ m < n < ∞, let xmn ∈ l2 be defined as

x(k)mn =





1 if k = m
m if k = n
0 otherwise

and let A = {xmn : 1 ≤ m < n < ∞}. Then no sequence of elements of A converges weakly to
the origin, yet the origin is an accumulation point of A in the weak topology.

Proof: Note that l2 is reflexible, so the weak topology and the weak* topology coincide
on l2. To prove that 0 ∈ l2 is an accumulation point of A in the weak topology, i.e., to prove
that, since 0 6∈ A, for any weak neighborhood S of 0, S

⋂
A is not empty, 10 we have to be

able to write down a base at 0 :

UF =
⋂

b∈F
{a ∈ l2 : | < a, b > | = |

∑
a(k)b(k)| < ǫ},

where F is a finite subset of l2 and ǫ > 0. In particular, for every fixed b ∈ l2,

Ub,ǫ(0) = {a ∈ l2 : | < a, b > | < ǫ}
is a weak neighborhood of 0.

10If A ⊂ X, then x0 ∈ X is called an accumulation point of A if every neighborhood of x0 contains a
point of A \ {x0}. If A is a subset of a Hausdorff space X and x0 is an accumulation point of A, then every
neighborhood of x0 contains infinitely many points of A. The closure of A consists of points x such that
every neighborhood of x contains at least a point of A.
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Given a weak neighborhood U = Ub,ǫ(0) of 0, can we always find xmn ∈ A so that xmn ∈ U?

Observe that | < xmn, b > | = |b(m) +mb(n)|, which can be made as small as we wish. First

we choose m large enough so that |b(m)| is very small, then for this fixed m, choose n large
enough so that |mb(n)| is also very small.

Can we prove that there is no sequence of elements in A that converges weakly to 0? Given
any sequence of elements in A, we show that there exist ǫ0 > 0 and b ∈ l2 (i.e. there exists a
weak neighborhood Ub,ǫ0(0) of 0) such that for any l, we can always find an element a in this
sequence with subscript ≥ l such that a 6∈ Ub,ǫ0(0).

Consider a sequence, ξ, of elements of xmn ∈ A. If some integer, say l, appears infinitely
many times as the m-index of xmn ∈ ξ, then we choose b so that b(l) = 1, b(k) = 0 k 6= l. Of
course, b ∈ l2 and there is a (of course, infinite) subsequence {xln} of ξ with | < b, xln > | = 1.
If none of the integers appears infinitely many times as m-index in ξ, then the range of m-
index of elements xmn ∈ ξ is unbounded. We may extract a subsequence, call it η, of ξ so
that their m-indices form a (strictly) increasing sequence. Note that the range of n-index of
xmn ∈ η is unbounded. We may extract a further subsequence, call it ζ, of η so that their
n-indices form a (strictly) increasing sequence of integers. Now we define b with b(n) = 1

m if

xmn ∈ ζ (Note: for each n there is only one m such that xmn ∈ ζ) and b(n) = 0, otherwise.
Note that if xmn ∈ ζ, then | < xmn, b > | = 1. All that remains is to notice that b ∈ l2.

Definition 4.1. Let X be a topological space. If A ⊂ X is such that every sequence in A has
a subsequence that converges to a point in A, then A is called sequentially compact.

Theorem 4.2. Let X be a normed linear space. If F ⊂ X ′ is weak* sequentially compact,
then F is countably weak* compact.

Proof: Suppose that there is an open cover (in weak* topology) {Uj} of F for which there
is no finite subcover. Then for any finite collection Uj , 1 ≤ j ≤ n, F \ ⋃n

j=1 Uj 6= φ. Pick

x1 ∈ F \U1; suppose x1 ∈ Un1
. Then pick x2 ∈ F \ (U1

⋃ · · ·Un1
). Suppose xk has been chosen

and xk ∈ Unk
. Choose xk+1 ∈ F \ (U1

⋃ · · ·Unk
). These points {xk} must all be distinct. The

sequence {xk} has a subsequence that converges weak* sequentially to a point y ∈ F. We
assume that y ∈ (some) Un.

Now let k′ be such that nk′ > n. Then xk 6∈ Un for all k > k′. Hence Un contains only
finitely many points of {xk} and so the subsequence we found above cannot converge to y in
weak* topology. This is a contradiction. �

Theorem 4.3 (Banach-Alaoglu). If X is a normed space then S∗ = {x′ ∈ X ′ : ||x′|| ≤ 1} is
weak* compact.

Theorem 4.4. If (X,T ) is compact and if there exist continuous functions {fn : X → R}
that separate points in X (i.e. for any x, y ∈ X, x 6= y, there is n such that fn(x) 6= f(y)),
then (X,T ) is metrizable.

Theorem 4.5. If X is a separable normed linear space and K ⊂ X ′ is weak* compact, then
(K,W∗) is metrizable.

Proof: By the above theorem we need only to find a countable family of continuous
functions from (K,W∗) to R which separates points in K. Let xn ∈ X and {xn} be dense
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in X. Let Λn : X ′ → C be defined as Λn(x
′) = x′(xn). Then each Λn is W∗ continuous (by

definition of weak* topology). Also {Λn} separates points in K. In fact, if x′ 6= y′ are two
elements in X ′ and Λ(x′) = Λn(y

′) for all n, then x′ and y′ coincide on a dense subset of X
and x′ = y′. A contradiction.

Theorem 4.6 (Weak* Compactness Theorem). If X is a separable normed linear space then
the bounded sets in X ′ are weak* conditionally sequentially compact. That is, if X is separable
and x′n ∈ X ′ with ||x′n|| ≤ A, then there is x′0 ∈ X ′ with ||x′0|| ≤ A and a subsequence x′nk

such
that x′nk

→ x′0 in weak* topology, i.e., at each x ∈ X, x′nk
(x) → x′(x) as k → ∞. (cf. page 22.

Butzer)

Proof: The proof is obtained by putting together the Banach-Alaoglu theorem and the
above theorem. �

Corollary 4.1 (Weak* Compactness Theorem for Lp(R), 1 < p ≤ ∞.). For 1 < p ≤ ∞, if

||fn||p ≤ A then there is f0, ||f0||p ≤ A and {fnk
} so that for each g ∈ Lp′ ,

∫
fnk

g →
∫

f0g.

Proof: Lp(R), 1 < p ≤ ∞, are conjugate spaces of Lp′(R), 1 ≤ p < ∞, which are
separable. �

Corollary 4.2. Let µn ∈ M (all finite Borel measures on Rn) be such that ||µn||M ≤ A for
all n. Then there is nk → ∞ and µ ∈ M so that µnk

→ µ in weak* topology on M, that is, for

any f ∈ C0(R
n),

∫
fdµnk

→
∫

fdµ. Moreover,

||µ|| ≤ lim inf
k→∞

||unk
||.

Proof: M(Rn) is the conjugate space of C0(R
n) ( by Riesz’s theorem) which is separa-

ble. �

Corollary 4.3 (Weak* Compactness Theorem for L1(R)). Let fn ∈ L1(R) such that ||fn||1 ≤
K for all n. Then there exist a subsequence fnk

and µ ∈ M(R) such that

lim
k→∞

∫

R

fnk
(x)g(x)dx =

∫

R

g(x)dµ(x)

for each g ∈ C0(R).

Proof: We may view each fn as an element of M(R), if we identify fn(x) with fn(x)dx.
Moreover, ||fn(x)dx||M(R) = ||fn||1 ≤ K for all n. The corollary follows. �

4.2. Dual or Conjugate Operators and Adjoint Operators. Let X,Y be Locally convex
linear topological spaces. Let T be a linear operator on D(T ) ⊂ X into Y. Let {x′, y′} be a
point in X ′ × Y ′ satisfying

< Tx, y′ >=< x, x′ > ∀x ∈ D(T ).

Then x′ is determined uniquely by y′ iff D(T ) is dense in X.
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In this case, a linear operator T ′ defined by T ′y′ = x′ is called the dual or conjugate
operator of T. Its domain is the set of all y′ ∈ Y ′ such that there exists x′ ∈ X ′ satisfying
< Tx, y′ >=< x, x′ > for all x ∈ D(T ).

Let X and Y be complex Hilbert spaces. Let EX be the operator that associates to each
y ∈ X the linear functional x →< x, y > . Then EX is a ‘conjugate-linear’ isometry of X onto
X. Let T be a densely defined linear operator from X into Y . The adjoint operator of T is
the operator T ∗ defined by

T ∗ = E−1
X T ′EY ,

where the domain of T ∗ is the set of all y for which (E−1
X T ′EY )(y) is defined.

The notion of transposed conjugate matrix may be extended to the notion of adjoint operator
in Hilbert spaces. In contrast, the notion of transposed matrix may be extended to the notion
of dual operator in locally convex linear topological spaces.

Clearly,

D(T ∗) = {y : EY (y) ∈ D(T ′)} = {y : x →< Tx, y > is continuous on D(T )}.
One can show that y ∈ D(T ∗) if and only if there exists a y∗ ∈ X such that

< Tx, y >=< x, y∗ >

holds for all x ∈ D(T ). In this case, y∗ = T ∗y. If T ∈ L(X,Y ), then T ∗ ∈ L(Y,X) and

||T ∗|| = ||T ||. In general, if D(T ) = X, then T ∗ is a closed linear operator.

It is known that R(T ) = N(T ∗)⊥. We include a proof. If y ∈ R(T ), then there exist
xn ∈ D(T ) such that Txn → y. Take z ∈ N(T ∗). Then < Txn, z >=< xn, T

∗z >= 0 and so

< y, z >= 0. This proves that R(T ) ⊂ N(T ∗)⊥. To prove the opposite inclusion, we assume

by contradiction that there exists p ∈ N(T ∗)⊥ but p 6∈ R(T ). Then there is f in the Hilbert

space X such that < y, f >= 0 for all y ∈ R(T ) and < p, f >= 1. Let x ∈ D(T ) and assume
that D(T ) is dense in X. Since < x, T ∗f >=< Tx, f >= 0 for all x ∈ D(T ), T ∗f = 0.
Since p ∈ N(T ∗)⊥, < p, y >= 0 for all y with T ∗y = 0. It follows that < p, f >= 0. This

contradiction proves that R(T ) ⊃ N(T ∗)⊥.
Let X and Y be complex Hilbert spaces. An operator U ∈ L(X,Y ) is said to be unitary if

U∗U = IX (the identity on X) and UU∗ = IY (the identity on Y ). These two equations imply
that R(U) = Y, D(U∗) = Y, and R(U∗) = X. Given U ∈ L(X,Y ), the following statements
are equivalent: (1) U is unitary; (2) R(U) = Y and U preserves the inner product; (3) U is
an isometric mapping of X onto Y.
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